Archimedes Spriral

Two curve-segments of a spiral of Archimedes are mounted as mirror images on a revolving disk. In this way a steady circular motion can be converted in a steady (linear) shuttling motion, as the saw tooth at the bottom suggests. This is used in sewing and spinning machines.
(See: Hans Lauwerier "Fractals. Images of Chaos", Penguin 1991,page 60)
Created by JSPgenerator.

JSP generator source:

a=Point(130,80,'')
b=Point(130,150,'hidden')
c=Circle(a,b,'')
p=Point_on_object(c,Math.PI/2,'hidden')
r=Point_on_object(c,3*Math.PI/2,'label(move)')
angle=Angle(p,a,r,10,10,"''",'hidden')
calcc=Calculate(20,20,'ss','A 180 / @abs_',[angle],'hidden')
s=DilationMarkedRatio(p,a,calcc,'')
Locus(s,p,c,200,'black')
AnimateButton(10,10,'Animate',[r,c],[8],[0],[1],'')
n=Translation(s,0,-80,'green')
Segment(s,n,'thick,green')
calcd=Calculate(20,20,'ss','0 50 -A 3.6 /  - ',[angle],'hidden')
k=Point(130,230,'hidden')
kk=TranslationFixedAngleMarkedDistance(k,calcd,0,'hidden')
ll=Translation(kk,50,70,'hidden')
mm=Translation(kk,100,0,'hidden')
pp=Polygon(kk,ll,mm,'blue')
Translation(pp,-100,0,'blue')
Translation(pp,-200,0,'blue')
Translation(pp,100,0,'blue')
Translation(pp,200,0,'blue')